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The baundary condition of Gurevich IS] Is restated with greater accuracy for 
the velocity potential of perturbed flow on % solid contour, performing smell 
osclll%tiona and past which % stream of&n i&s%1 incompressible fluid flows 

with separation. 

wasl&nined by Gurevich and Khaskind [2] in 1953. 
The problem of Jet flow over a contour performing small oscillations 

A different anproach to _ _ 
the solution of this problem w%s used in 1955 by-Woods [3] and then sub- 
sequently developed In c4 and 51 and other works. 

Gurevich and Khaskind represented the complex potential Y of the unsteady 
flow in the form irr - u. + ~(i* where e is the complex potential of steady flow 
and m is the complex potential of perturbed flow, a;nd formulated the bound- 
ary value problem for the determination of w. Using Lagrange’s integral and 
the condition of constant pressure they derived the boundary conditlqn for :+ 
on free surfaces. Assuming then that the normal velocity u, of the pertur- 
bed flow on the oscillating contour is known and canslderlng that the func- 
tion a(u), which reflects the flow region on a canonical region, is invari- 
%nt,they established that the folloulng relationship holds on the contour 

The upper half-plane Ss taken as the canonlc region. 

If it is assumed, a8 It WBS done in [2], that w is a harmonlo function 
of time * ) then the problem of determining w(m,$f can be reduced to the 
determilldtion of some analytical function of u in the upper half-plane. 
This function of L: is related in a definite fashion to w(r+,$) through Its 
known boundary values on the subst%ntl%l axis of the plane u . 

In the problem of harmonic oscillations of a flat plate it was assumed 
that u, = II, (t), where o,,(t) Is the normal velocity of points of the oscll- 
latlng plate. 

Gurevlch [l] assumed V, , the normal velocity of points on the contour 
and R(t)* the small deflation angle of the contour tts known. He established 
th%t 

where h [‘lx is the projection of velocity of the steady flow on the external 
normal to the stationary contour. r?V,, is brought about by displacement of 
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the contour. V, Is the velocity of the steady flow reiative to the contour. 

If everywhere 

where q is the displacement of contour points in 
then 

2. Let us derive the boundary conditions for 
ming that the vector of progressive oscillations 

the direction of normals, 

(1.3) 

a /an on the contour assu- 
a ‘p 6) and the angle of de- 

flection of the contour e(t J 

Fig. 1. 

with respect to its principal position are 
given. 

We designate through no and 70 respec- 
tively, the unit vectors of the external nor- 
mal (directed tcwards the Inside of the fluid) 
and the tangent to the stationary contour; P, 
and 7 are the normal and the tangent with 
respect to the oscillating contour at the 
instant of time under observation., The unit 
vectors of the tangent and the normal form 
a right-hand side system of Flg.1. If x 
I/~ are coordinates of some point M of tRe 

and 

contour at Its principal position, x and I/ 
are coordinates of the same point at the moment 
t, in the stationary system of coordinates, 

’ and g’ in the system of coordinates which 
it connected with the movi,ng contour, then 

z = 50, d = (x -- ux) cos p + (!I -- a,) sin 2 

!I’ z- ?lo* !I’ = - (.c - a,) sin /3 f (y --- u,) cos f3 

For small 0 and 0 we obtain, discarding small quantities of orders 
higher than the first 

.c’ = .L -- h, (5, I), y’= y - fi,, b/T 0 (2.1) 

Here h,V = QX - !/p and 
ment vectcr d 

bY = ay -k xfi are the components of the dlsplace- 
of contour points; so that 6 = a -I- y. where CL corresponds 

to the displacements of contour points due to progressive oscillations, and 
y corresponds to displacement of contour points due to rotation of the con- 
tour. With accuracy to small terms of first order 

‘Sx = cl, - y,,p 6, = uy :- r,,p (2.2) 

The velocity of perturbed fluid flow at the point (x, yi is apparently 
equal to V (x, y) + VT. wherev (x, y)is the velocity in the steady flow. 

Let F (z, y, t) -= 0 be the equation of the solid contour in the stationary 
system of coordinates. The condition of no fluid flow through the contour 
has the form 

After simple transformations utilizing (2.1) the last equation can be 
brought into the form 
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-_VF+(V+VI)[VF-_(~~i-_j)]=O ( VF = g i + go j) (2.3) 

The boundary condition (2.3) is fulfilled at the moment t on an oscll- 
tatlng contour on which V (x, ?I) -= V (x’ -i- a,, y’ -!- atl). Initially we shall 
assume that the function V (x, y') is continuous everywhere on the contour 
and has continuous derivatives UD to and includina the second. Then. con- 
slderlng the displacements of thk contour to be siiall and limiting the expan- 
Eto;l;f V (x,y) in powers of 6 terms of the first order of smallness, we 
t 

v (x9 Y) = v, -I- (W) v, (2.4) 

Here V Is the velocity relative to the contour for x = X' and I/ = 
i.e. for &e principal position of the contour. Substituting (2.4) into f 

I, 
2.3) 

and utilizing the boundary condition V,VF = 0, we find 

Since V&76) = 0, (VOW 6 = I3 (V,,j -V. i) and according to the continuity 
equation VV, = div V, = 0, then from vet g or identity 

WOV) 8 - w7) v, = v x (5 x Vo) - 8 (VVO) + vo (06) 
we have 

(67) VO = - V x (6 x VO) + P (v,,j - V,,i) 

And with accuracy to small terms of the first order 

In the derivation of this equation an idea of Tinunan and Newman C61, who 
examined the problem of small oscillations of a body moving with constant 
velocity, was utilized. 

The right-hand side of Equation (2.5) turns out to be a small qunntity of 
the order of b , If ah/at _ O(b). Discarding small terms of highest order 
in the left-hand side of the equation, It can be assumed that - is evalu- 
ated at x = n' and v = y', i.e. on the contour at its principal position. 
The last conclusion is justified in the case where ah/at has a finite value, 
because here _ will have the order of ah/at and small quantities in both 
sides of (2.5) can be neglected. Consequently 

%J 
ano - (g + V X (6 x VO)) no -- (2.6) 

We have 

77 x (8 x vo) = v x [&do + SnDno) x VoTd7 = 

= - V x 6,.V,,,.k = & (6,,.Vo,.) i - f (B,,oV,,,o) j 

Here k Is the unit vector perpendicular to the plane xy . For steady 
flow the velocity vector on the contour is oriented along th? tangent to the 
contour, therefore the index 7O in V,,+ will be omitted below. Further, 

a a 
(V x (6 x VO)) no= z (6,JJ cos (r&O, y) - - (B,J,) co9 (7&O, z) = 

aY 

= - ; (8,J,) 
Wll 

= -a,.~+v&+~ 
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Here 8 is the radius of curvature of the contour. If the last relatlon- 
ship Is substituted Into (2.6), we will have 

(2.7) 

In view of the fact that all quantities In Equation (2.7) refer to the 
stationary contour, the index denoting this will also be omitted In what 
follows. 

If the radius of curvature of the contour Is sufficientlv areat. so that 
R)-‘_ O(a) and R-‘v6 
Equation (2.7) can b:! 

Since 6 = (X + B , 

- 9(aa), then the last term of the righi-hani side of 
neglrcted, then 

then 

%I hl 1 . a w + YY ---- 
at-at---z+ as (p-23) 

at 

(2.8) 

acp %I av 1 a (29 + y2) av 
a’;=at-anTG+T as (e,-B.)+~[a;+B(.$-y~)]+vB 

From this equation it follows that in case of purely progressive oscilla- 
tions of the contour 

alp h, av V - afn= at -a~~s+a~fT- 
If the contour performs rational oscillations only, then 

(2.10) 

(2.11) 

Since in the derivation of the boundary condition (2.9) an assumption 
about the continuity of the function V(r,y) and of all Its derivatives up 
to and includlng.the second derivative was utilized, condition (2.9) Is appll- 
cable only to problems of jet flow past a certain class of obstacles. To 
this class belong smooth contours with finite cavature of jets at the points 
of separation. It Is apparent, that condition (2.9) is also correct for 
small oscillatlns of smooth closed contours surrounded bu conclnuous fluid 
flow. In these cases V(X,Y) will be an analytic function of coordinates of 
contour points. From Equation (2.11) in particular follows the obvious 
boundary value ?&an = 0 on the circumference revolving about its center. 

3. In the general case of flow with jet separation around obstacles of 
arbitrary shape the Taylor’s theorem for determination of Increase of the 
function V(x,yj cannot be used. For example, In the simplest problem of 
symmetrical jet flow past a flat plate the function V(x,y) will be anal tic 
everywhere, with the exception of separation points of the jet where P av as 
becomes ..nf inity . Therefore In such cases Instead of the expansion (2.4) it 
can only be written 

v (x, 2/J = v, + nv, 

After making the necessary computations analogous to those which were 
made in the derivation of condition (2.7), we obtain 

~2!!&? -AV,,- fJV (3.1) 
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For the computation of bv, the method which 1s examined for the problem 
of symmetrical jet flow past a plate, performlng small progressive dlsplace- 
ments In the direction perpendicular to the plate,can be used. 

Having equations of [1] 

z=~[2u+u1/1-u~+ sin-' u], 
CO 

we find 
iQ 

2 (x) = r 
2ix (3 - x2) 

-_i In I - x. 
00 

(1-_ 1 i- x I 
(3.2) 

Using Taylor's formula 

In which AX 1s considered to be small and we limit ourselves to terms of 
second order of smallness. We obtain 

8Q 1-l-x2 l6Qx (2 + x") 
AZ + LAY =-v, (1 _ xt)a(AVX - iAV,) -v, (1 _ x2)d (AV,- iAV,)y 

On the plate V,= 0 and x = - l,V,, therefore 

84 1 -Vu2 324 Vu (2 - Vu2) 

A2 = -v,(i + ~~2)s *V3c+~~- (1 + vyz)4 AV,AV, 

8Q i - v,,2 ISQ Vlj (2 - VyZ) 
AY = V, (I + vv2,,,3%+ v, (1 + vu2,4 [(AV,Y - W’,)zl 

Assuming by = 0 , we find from (3.4) 

1 1 -Vu' 

AV, = G ~~(2 _ VYz) * 
1 (1 - Vy'), 
a Vv'yl(2 _ Vua)a -I- (*Vx)" 

1 

'I. 

(3.3) 

(3.4) 

and substitute this In (3.3). Since for AV,= 0, AV, Is also equal to 0 , 
it Is necessary to take the minus sign in front of the root In the last 
equation. 

We obtain 

=I2 *x ~ 324 VI, (2 - "v') 1 (1 - Vg4)" 

VCO (1 fV2)1 II 
'lij'V (2 _ V a)*-! (AV,Y? 

3 
AVX 

!I II 
(3.5) 

Soi+lng (3.5) with respect to AV,, we find 

(A,‘,)” = _ ; * [u2i12 -p X)2 1’” 

Here 
II,, (2 - VvC) 

A = 2 (i + V ‘L)4 
1 (1 - V!,1)” 

1 
?I 

13 = G \/,‘L(‘L -V,,‘)S 

(3.6) 

It is apparently necessary to take the plus sign in front of the root In 
(3.6). Then 

PAX Jffijjcix)" 

4(A x)P 
%I I 

'12 (3.7) 
Since the rigns of AX and Av, must be opposite, it IS necessary to take 

the minus sign In front of the root In (3.7), consequently 
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VCQ (1 + v 2)a 
AV, r _- -?-. 

4Jf/zQ 1-vv2 
For small values VY it follows from (3.8) that 

AV, = 
-V, (1 + Vg2)cAz 

8Q (1 - Vu? for v, = 1 

We substitute Vv = u/(1 -j- VI- u2) into (3.8); taking Into account 
that the external normal to the plate coincides with the negative direction 
of the x-axis, we find 

Q 1/2 (1 - ~2) (1 + 1/1--y x 

(3.9) 

From boundary condition (3.1) and Equation (3.9) It follows that for har- 
monic oscillations of the plate the change of perturbed velocity with time 
does not conform to harmonic law. However, for harmonic oscillations of 
high frequency and small amplitude AV~ may turn out to be a quantity which 
is small to a higher order than ab,/bt 
In the boundary condition (3.1). 

then this term can be neglected 
From &a It follows that for such oscll- 

latlons changes of perturbed velocity on the plate conform to the harmonic 
law with a sufficient degree of accuracy. 
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