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The boundary condition of Gurevich [1] is restated with greater accuracy for
the veloclity potential of perturbed flow on a solid contour, performing small

oscillations and past which & stream of an ideal incompressible fluid flows
with separation,

1, The problem of Jet flow over a contour performing small oscillations
was examined by Gurevich and Khaskind [ 2] in 1953, A different approach to
the solution of this problem was used 1ln 1955 by Woods [ 3) and then sub-
sequently developed in [4 and 5] and other works.

Gurevich and Khaskind represented the complex potential ¥ of the unsteady
flow in the form W=y, +w, where yp, 1s the complex potential of steady flow
and p is the complex potential of perturbed flow, and formulated the bound-
ary value problem for the determination of . Using Lagrange's integral and
the condltion of constant pressure they derived the boundary conditiqn for .
on free surfaces, Assuming then that the normal velocity v, of the pertur-
bed flow on the osclllating contour 1s known and considering that the func-
tion z{u), which reflects the flow reglon on a canonical region, 1s invari-
ant,they established that the following relationship holds on the contour

dw dz i
kRPN B 1.1
Im e ="t du! }

The upper half-plane i3 taken as the canonic region.

If it 1s assumed, as 1t was done in [2], that v, 1s a harmonle function
of time ¢ , then the problem of determining w(g,@} can be reduced to the
determination of some analytical function of u in the upper half~-plane.
This funection of y 1is related in a definite fashion to pfu,t} through its
known boundary values on the substantial axis of the plane u .

In the problem of harmonic osclllations of a flat plate it was assumed
that v,= U,(¢t), where U, (¢) 1s the normal velocity of points of the oscil=
lating plate.

Gurevich [1] assumed U, , the normal velocity of points on the contour
and s(t), the small deflation angle of the contour as known. He established
that

Z]n = _'ﬁ‘if() ,}_ Avgn + Un {i‘-)}

where AVo, 1s the projection of velocity of the steady flow on the external
normal to the statiochary contour. 4V,, 1s brought about by displacement of
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the contour. V, 1s the velocity of the steady flow relative to the contour.
If everywhere

, aVOn B 6Vo . N
AV = g 1 =g 1 =) v

where n 1s the displacement of contour points in the direction of normals,
then

ak
vy = Un - 7)}‘0'1 + BVO (13)

2. Let us derive the boundary conditions for 3 /én on the contour assu-

ming that the vector of progressive osc’llations a?z) and the angle of de-

flection of the contour Bg(t) with respect to its principal position are
given,

We designate through n°® and 1° respec-
tively, the unit vectors of the external nor-
mal (directed tcwards the inside of the frluid)
¥ M(z.y) and the tangent to the statiocnary contour; n

¢ and r are the normal and the tangent with
n° I respect to the oscillating contour at the
= instant of time under observation. The unit
)]

¥ n 4T

vectors of the tangent and the normal form
a right-hand side system of Fig.l. If x, and
ad 0 ] Yo are coordinates of some point y of t%e
contour at 1ts principal position, x and
> are coordinates of the same polnt at the moment
g k3 t 1in the stationary system of coordinates,
x’ and ‘ in the system of coordinates which
Fig. 1. is connected with the moving contour, then

T = xq, « =(r —a)cosB + (y—a)sinp
TS W= —(c—a)sinB 4+ (y —u)cosB

Por small g &and B we obtaln, discarding small quantities of orders
higher than the first
o= =6 (x, ), y =y — 6” (v, O 2.1

Here 6.=a, —yB and 0,6 =a,6 + xf are the components of the displace-
ment vecter & of contour points; so that 8§ =« -} ¥, where « corresponds
to the displacements of contour points due to progressive oscillations, and
Y corresponds to displacement of contour points due to rotatlion of the con-
tour. With accuracy to small terms of first order

B = (zy + @y — YB) B = 5B, wP=(+to,+ BB =y
O, = a, — yof 6y =a, =y (2.2
The velocity of perturbed fluld flow at the point (x,y) 1s apparently

equal to V (x, y) + V. whereV (x, y)is the velocity in the steady flow.

Let F(e,y,t) =0 be the equation of the solld contour in the statlonary
system of coordinates. The condition of no fluid flow through the contour
has the form

dF  BF L L
T WA Ve TVF =0
or
8F ax° oF 3y’ [./8Fdx BFdy'\ _[OF ' BFdy
o A SR suway) 3 (5m 33+ 7, a‘,)] -

After simple transformations utilizing (2.1) the last equation can be
brought into the form
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The boundary condition (2.3} 1s fulfilled at the moment ¢ on an oscil-
tating contour on which V (z, y) =V (& + 8., ¥ +6,). Initially we shall
assume that the function V (z’', y¥’) 1s continuous everywhere on the contour
and has continuous derivatives up to and including the second. Then, con-
sidering the displacements of the contour to be small and limiting the expan-
sion of \’(x,y) in powers of & terms of the first order of smallness, we

obtain
Vi(z,y) = Vo + (6V) V, (2.4)

Here YV, 1is the velocity relative to the contour for x = x’ and y = y’,
1.e. for the principal position of the contour. Substituting (2.4) into ¥2.3)
and utilizing the boundary condition V,/F = 0, we find

7

28 . oF . OF aF  oF
- atvF+l(6V)Vo+V<P][VF—B(a—yol —5;;1)]——3“(5%1 —a_x;-')=0

Since Vo(V8) =0, (V)8 =P (V.d — Vo,i) and according to the continuity
equation [V, = divV, = 0, then from vector identity

(Vo) 8 — BV) Vo = TV x (8 x Vo) — 8 (VVo) + Vo (VD)

we have
(GV) VO =—V X (6 X VO) ’+‘ B (V()Aj - V()yi)

And with accuracy to small terms of the first order

a8
VOUF = (5 4+ 7 x @ % Vo)) 7F 2.5)

In the derivation of this equation an idea of Timman and Newman (6], who
examined the problem of small oscillations of a body moving with constant
veloclity, was utilized.

The right-hand side of Equation (2.5) turns out to be a small quantity of
the order of & , if 38/at ~ O(8). Discarding small terms of highest order
in the left-hand side of the equation, it can be assumed that ~ 1s evalu-
ated at x = x’ and y = y’, l.e. on the contour at its principal position,
The last conclusion is Justified in the case where ab/at has a finite value,
because here ~ will have the order of ao/at and small quantities in both
sides of (2.5) can be neglected. Consequently

:T(E = (%ﬁ + 7 X (@®x Vo)) n° (2.6)
We have
WV %X (8 x Vo) =V X [(8,7° + 8,n°) XV ov°] =
i) . 2 .
= —V X 8,V ok = oz (6n°V01°) 1= 5;/ (an"Vot") J
Here Kk 1s the unit vector perpendicular to the plane xy . For steady

flow the velocity vector on the contour is oriented along th» tangent to the
contour, therefore the index =7, in V$1° will be omitted below. Further,

2 i)
(V X (8 x Vo)) n°= 72 (8,¥) cos (n%, y) — 3, (8,V9) cos (n°, z) =

d v 3.V,
=—5; BV = — on,a—s"+ v + g
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Here AR 1s the radius of curvature of the contour. If the last relation-
ship 1s substituted inte (2.6), we Wwlll have

op v Veb.o
.ﬁ’:%——én"-a_so—'rvoﬁ_{_ R (2'7)

In view of the fact that all quantities in Equation (2.7) refer to the

stationary contour, the index denoting this will also be omitted 1in what
follows.

if the radius of curvature of the contour 1is sufficiently great, so that
A7~ 0(8) and R 'ys; ~ 0(8%), then the last term of the right-hand side of
Equation (2.7) can be neglrcted, then

o9 08, av
R N 2.8)
Since & =g +8 , then
1 0 (22 2 d
b=, 0 —gB0 2L s a0 (-Z-0E)
9, da, 1 9ty _®
a=a-2ba (8=3) %9

p_Hn W 10+
=9t — % 3s

+fT(5%—5')+%[“v+5(’%—y%§)} + Vb

From this equation it follows that in case of purely progressive oscllla-
tions of the contour

op 9o, ov 1%
5;}:7[—-0715;-*—(11? (2.10)

If the contour performs rational osclllations only, then

dp 1 o(@fyd),V _\ VB oy oz
5.=5T(55;—B)+7(R+%—ya,)

(2.11)
Since in the derivation of the boundary condition (2.9) an assumption
about the continuity of the function V(x,y) and of all its derivatlives up
to and including.the second derivative was utilized, condition (2.9) is appli-
cable only to problems of jet flow past a certain class of obstacles. To
this class belong smooth contours with flnite curvature of jets at the points
of separation. It is apparent, that condition (2.9) is also correct for
small oscillatins of smooth closed contours surrounded by concinuous fluid
flow. In these cases V(x,y) will be an analytic function of coordinates of
contour points. From Equation (2.11) in particular follows the obvious
boundary value a¢/an = 0 on the clrcumterence revolving about 1its center,

3. In the general case of flow with jet separation around obstacles of
arbltrary shape, the Taylor's theorem for determination of increase of the
function V(x,y cannot be used. For example, in the simplest problem of
symmetrical jet flow past a flat plate the function V(x,y) will be analytic
everywhere, with the exception of separation points of the jet where aV/3s
becomes .nfinity. Therefore in such cases lnstead of the expansion (2.4) it
can only be written

V(z,y) = Vo + AV,

After making the necessary computations analogous ta those which were
made in the derivation of condition (2.7), we obtain

20
g%-: _&E_Avn_ pv @1
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For the computation of AV, the method which is examlned ror the problem

of symmetrical Jet flow past a plate, performing small progressive displace-
ments in the dlrection perpendicular to the plate,can be used.

Having equations of (1]

z:iVQ—[quruVTZFJr

- v % _ % _ V1 __uuu.l
we find . . . )
z(y) = ;,i [2”((1(3_}))(2) —iln i - ;‘J 3.2)
Using Taylor's formula

2

a 19
2O Ap =2 b Az =1 (0 b g Ar g (B0

in which Ay 1s considered to be small and we limit ourselves to terms of
second order of smallness.

We obtain
. 8Q 14 x* ) 16 2 4 y2
A”"i"Ay:—VSHT)Zijs(AVx—lAVV)—JX( )

Vo T OV V)

-~ iV,, therefore

On the plate

v,= 0 and y =

gQ 1—Vz2 320 V, 22—V,
8Q1—V2 160V, 2~V
M=y AV T T A v R — @V 69
Assuming Ay =

0, we find from (3.4)
1 1-Vp

1 (1 — Vvl)z 1y
= T ey — 2
AVy=7% V,2—=V3 + [16 VAC —V R + (AV,) ]
and substitute this in (3.3).

Since for aV,= O, AV, 1s also equal to O,
it is necessary to take the minus sign in front of the root in the last
equation.

We obtain

Ay 320V T [1 (1 — Vo

2
v, TFval | 67,C—v»n" (AV, ) ] AV, (3.5)
Solving (3.5) with respect to aV,, we find

B B 4 4 Azt o
@UV=-7iPL7m—#] (3.6)
Here

320 V;/ (.& - Vy:) B =
VOO (1 + Vy2)4 ] _

1 A=V
6V 2~V 32
It 1s apparently necessary to take the plus sign in front of the root in
(3.6). Then Vv o y
2Az —BA+ VIEEEF&@A® |
AV, =+ =+ [ (3.7)
V24 (4B + V AZB* F 4B z)*

21

Since the cigns of aAx and AV, must be opposite, it 1s necessary to take
the minus sign in front of the root in (3.7), consequently
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Vo @AV ( [ (VaoV,L-VDER—V,H 2 Th)%
AV\=—4V§Q 1_V:z{1'r['1T(—Qi° (1___Vu2)2. Ax) ] } Az
(3.8)

For small values V¥, it follows from (3.8) that
—V_ (1 + VA A
AV, = ;O i 1{,2 AVx=—‘——-—_x— for V, =1
QU —V.3 V2[Az[Q/V,, v
We substitute V, = u /(1 - Y1 —4? into (3.8); taking into account

that the external normal to the plate coincides with *he negative direction
of the x-axis, we find

Voo 4
Aan: - AV\ = —_Q—VZ (1 — u2) (1 L Vm)g
Vo wit +3 YT =wHas | ]'/:}—v,
X{1+ [1 * ( QT +VI— ey ) Az (3.9)

From boundary condition {3.1) and Equation (3.9) it follow. that for har-
monic oscillatlions of the plate the change of perturbed velocity with time
does not conform to harmonic law. However, for harmonic oscilllations of
high frequency and small amplitude Ay, may turn out to be a quantity which
is small to a higher order than ab,/%t , then thils term can be neglected
in the boundary condition (3.1). PFroem this 1t follows that for such oscil-
lations changes of perturbed velocity on the plate conform to the harmonic
law with a sufficient degree of accuracy.
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